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1. Introduction
In the Al literature, the topics of qualitative reasoning and causality have been closely

interwoven, and have sometimes been treated as though there was an essential connection

between them. In fact, however, the two topics are quite separable. Qualitative reasoning is

mainly used to solve problems in comparative statics: if there is a change in the value of an

exogenous (independent) variable of a system of variables, what changes will take place in the

endogenous (dependent) variables when the system reaches its new equilibrium? Causal

reasoning, on the other hand, is mainly used to explain how a system works: the mechanisms of

causal connection among its parts and the way in which these causal connections propagate

effects through the system.

Of course the two methods of analysis can be combined. The causal ordering of the

variables of a system, together with the algebraic signs associated with the causal links provide

sufficient information to carry out some (but not all) qualitative analyses. However, given any set

of equations, causal or not, that describe a system, and given the signs of the coefficients in

these equations, qualitative analysis can be carried out without concern for the causal ordering of

the variables.

In previous papers, two of us have explicated the formal foundations of causal ordering for

dynamic systems, static systems, and systems containing a mixture of dynamic and static

mechanisms. We have also treated the problem of aggregation and disaggregation of causal

systems, and have shown both how to cary out these processes and what their consequences

are for the descriptions of the systems [4, 3, 51.

In this paper, we propose to provide comparable foundations for qualitative analysis, and in

particular, to show how qualitative reasoning arises naturally and simply out of the structure of

systems of algebraic equations and ordinary differential equations. Our goal is to sum up and

explicate the practices of researchers in many fields who use qualitative reasoning, and thereby

to gain an understanding of the formal assumptions and mechanisms that underlie this kind of

analysis. There is no new mathematics in what we have to say. Our reason for saying it is that

there does not appear to exist any readily available general and systematic account in the Al

literature of the simple mathematics that is implicit in what people are doing when they carry out

qualitative analyses of systems of interconnected variables-t The extensive discussions of

1Perhals t e best teauents of the subjec - al now very old -- are o be found in Lota [61, Evans [21, and Samuelon
I81. te first of which applies he analysis mainly lo biology, te lint two 1o economics.
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qualitative reasoning to be found in the Al literature are not rooted in the familiar formalisms of the

algebra and calculus of real numbers but postulate new, independent formalisms.

Since it has not proved easy to make these new formalisms consistent and rigorous, it

would be very convenient if we could simply take advantage, for this purpose, of familiar

mathematical systems that are already in place. We will show that this can indeed be done, and

that standard formalisms can be used to explicate the practices of qualitative reasoning.

2. Qualitative Reasoning Based on Ordinal Relations

Qualitative reasoning treats quantities that are scaled only ordinally, hence are defined only

up to arbitrary strictly monotonic transformations. Greater and less, warmer and cooler, taller and

shorter are ordinal terms that can be used to describe the qualitative relations between pairs of

values of the corresponding ordinal variables (amount temperature, height). On the other hand,

terms like "twice,* "half,= 'four more than" imply cardinality and cannot be applied to ordinal

variables. If ardor is an ordinal variable, then one lover cannot be twice as ardent or half as

ardent as another -- only more or less ardent.

Of course, the fact that cardinal properties cannot be attributed to ordinal variables does

not prevent us from attributing ordinal properties to cardinal variables. Even in the presence of a

Celsius thermometer, one oay can simply be warmer than another, or cooler. In particular, it may

often be convenient to adopt a particular cardinal scale to represent an ordinal variable, restricting

ourselves to just the ordinal properties of the scale and renouncing any interpretation of its

cardinal properties. Thus, in the (ordinal) Mohs scale of hardness, cardinal numbers are

assigned: for example, 2 for gypsum, 4 for fluorite. One can say that fluorite is harder than

gypsum, but not that it is twice as hard. Still, it may be convenient to employ the numerical scale,

provided that we remember to attach meaning only to the ordinal, and not to the cardinal

properties of the scale.

Ordinal relations are invariant under arbitrary strictly positive monotonic transformations of

the scale of measurement, while cardinal relations are invariant only under affine transformations.

Although ordinal relations are weaker than cardinal relations (the former are implied by, but do

not imply, the latter), they have the advantage that they can often be established empirically when

we do not have enough information to establish values on a cardinal scale. Thus, when I step out

of doors, I may know that it is warmer than it was yesterday without knowing the exact F-, irenheit

2
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or Celsius temperature on either day.

If we ar. considering an equation connecting two variables, wfAx), we may know that as z

Increases y win Increase (dyldx> O) without knowing the exact functional form of the relation, much

less the values of numerical parameters. Or, even if we can know the form of the function and

the parameter values for one particular situation, we may be interested in reasoning about the

equation generally, over a whole range of situations of which this one is only a special case, but

in all of which y remains some strictly monotonically increasing function of x. In both of these

cases, we will want to use the methods of qualitative (ordinal) reasoning. Let us now state these

matters a little more formally.

First, a few words about notations: we will sometimes use f to denote the derivative of f

with respect to x. Iff is a function of x alone, f is the total derivative off with respect tot. Whenf

is a function of several variables including x, f is a partial derivative. Whenever this notation is

used, the context should make it clear which is the case.

2.1. Invarlance under Monotonic Transformation

If a variable is meant only to define the ordering of some items along a scale, we style the

variable ordinal. This variable can be replaced by any other that does not disturb the ordering by

transposing items. Thus, if x(x>O) is a real variable, but we are interested only in its ordinal

properties, we may replace it by x2 or ex or logx, without changing these properties, for if x i >xj

then jzi >z2-,ei>e' and lo. i >/ox 1 .

More precisely, the ordering of a set of elements by a variable associated with that ordering

is invariant under any positive strictly monotonic transformation of the variable. Consider X c X

and ye Y. Then Ax).X-+Y, is a positive strict monotonic transformation if y,= xi) >yj=.Ax)

whenever i > xj and vice versa. If a set of objects has been ordered by the assignment of values

of x then replacement of all these values by the corresponding values of y will not change the

ordering.2

For simplicity, we will confine ourselves to variables that are defined over the reals. Let x

and y be a pair of such variables, and let us suppose that they are positively monotonically

related. That is, there is a function f.), f.R-.+R, such that i > x, iffy yi-fxi) > yj =f(xj). Now we

2In what follows, we wll omit fto adlecva. "sfr from our characwrization of monotonic transformaions, but for
simplicity, we will limit ourselves to he relation, >, of sltct inequality instead of using ft weaker relation,, greatsrthan
or equail o."

3
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subject ooth z and y to positive monotonic transformations, g(e) and h(.) respectively, so that
s(x) and w-hm(y). Since g and h are monotonic we have z, > zj iff 1, > x,, and wj > w, iff y, > yj.

But since x and y are positively monotonically related x, > iff w, > wj. This is readily

generalized to:

Theorem 1: If two variables x and y, are positively (negatively) monotonically
related, and if x is transformed to z and y to w as z = g(x) and w a h(y), where g and h
are arbitrary positive monotonic transformations, then w and z are positively (negatively)
monotonically related.

Proof: Since g is a monotonic transformation
Xi > x<-=>z i. z.

Similarly,
-i > yj<">wi > wi,

since h is monotonic transformation. Given,

Xi > xj<->Y -yj.

it follows that

i > z .< =>X, > x' -y j , yj, -+wi > wj.*•

For example, suppose we have observed empirically, using ordinal measures, that

pressure grows with temperature. Then if we replace our pressure scale with a new ordinally

equivalent scale (e.g., Po, where Ps is the square of pressure), and our temperature scale with an

ordinally equivalent scale (e.g., To, where T* is the logarithm of temperature), it follows that P.

grows with Ts.

Moreover, monotonic relations between ordinal variables are transitive in the following

sense:

Theorem 2: If x varies positively with y and y varies positively (negatively) with z,
then x will vary positively (negatively) with z. The latter relation will be invariant under
arbitrary positive (negative) monotonic transformations of x and z.

Proof: Given y mlx),fx > 0, and z - g(y), g >, 0,

dt .dzdy >

Therefore monotoniaty is transitive. Note this holds for!2, ds < 0.
dx dy

Let vw(x), w-i(z) such that v,, w, > 0.
dw dw dz dw dzdyd-
T -Ea--U----x> 0.dv dz dv dz dydx dv

Note that !>0 since > 0. This is also true for v1, w 0.. < 0.
dw4

4
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3. Contlnuous, Dlferentlable Functions

If functions of ordinal variables can be represented by functions of cardinals that are

continuous and possess appropriate derivatives, then for monotonic transformations that are also

continuous and possess appropriate derivatives, we can apply the usual operations of the

differential calculus to them. Consider ordinal variables x. y, and z, and suppose we find that z

varies positively monotonically with x when y is constant, and z varies negatively monotonically

with y when x is constant. Then if z =Ax, y) is everywhere differentiable we have az1ax > 0 and

az/y < 0, where az/tz and W/ay are the partial derivatives of z with respect to x and y,

respectively.

In general, it would be convenient if we could always simplify a function z ZAfx,y) by taking

monotonic transformations of our variables in such a way as to transform the function to

z* =x xy* or z* = x* + y'. where z*, x', and y* are the transformed variables. Is this possible in

general? It is not. The proof is not difficult, but we will omit it here.

But the unavailability of such a transformation is not important, since if we restrict ourselves

to qualitative reasoning and ordinal properties, we need not specify any but the ordinal properties

of the functions we deal with; the exact form of the function does not matter. If, in the last

example, x undergoes a positive monotonic transformation to w, so that now z = g(w,y), then if

f. > 0, g., > 0.

3.1. An Example

Consider two equations connecting a pair of variables, x and y, with an exogenous

parameter, T, in the first equation:

Y =Ax,T)

x a g(y)

Suppose the system described by these equations is in equilibrium for a particular value of T, and

that T is now displaced by an amount, dT. We now solve for the displacements of x and y that

restore the system to equilibrium, dx and dy respectively:

dy -f. dx + fjd
dx - ydy

where the subscripts denote partial derivatives. Then we find that:

dy--T d
(1-f, g,

5
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dx = yfT dT()
(1-j; g)

Without loss of generality, we can takefT > 0. for we can always replace T by -T.

IA: Now if f, and gy are both positive and fy - 1, then dy/dT > 0 and di/dT > 0.

I: If f, and gy are both positive, butIfgy > 1, then d/dT < 0 and dr/dT < 0.

IIA: Now if f, and gy are both negative andfg, < 1, then dy/dT > 0 and dX/d7 < 0.

USB: If f, and g. are both negative, butlfr > 1, then dy/dT < 0 and dr/dT > 0.

III: Iff > 0 and gy < 0, then dy/dT • 0 and dx/dT < 0.

IV: If fj < 0 and g. > 0, then dy/dT > 0 and dr/dT > 0.

Table 3-1 summarizes these results. Since the result in cases IA and IB depends on the

cardinal magnitude of f1g7, we might suppose that it is not invariant under monotonic

transformations of the variables. But this is not the case. Suppose we transform z monotonically

to w p(x), and y to z q(y). Then

z, = -If, and w,= -,

so that
qyf p, g

z,,w S -T q = fz gy"P q7

The product of the partial derivatives of the two dependent variables is invariant under monotonic

transformations of those variables, hence the sign of (1-f, g) is an ordinal property of the system.

Notice that the conclusions we reach by solving the simultaneous equations are not always

the same as those we would reach simply by propagating dT through the equations, step by step.

For consider the cases examined above:
* IA: The increase in T causes an increase in y, which in turn causes an increase in x.

If we trace the repercussions further, we see that the increase in x will cause a
further increase in y, so that there will surely be a net increase in x and y, in
agreement with the algebraic analysis in Case IA. Our curiosity may be aroused as
to whether the process will converge to an equilibrium or diverge, a question that did
not arise explicitly in our algebraic treatment. We will return to this question later. IB
is similar.

* IIA: The increase in T causes an increase in y, which causes a decrease in x. The
decrease in x will cause a further increase in y, and so on. There will surely be a net
increase in y and a net decrease in x, as in algebraic Case IIA. But again, we do not
know whether the process converges. IIB is similar.

* III. The increase in T causes an increase in y, which causes a decrease in x. This
time a decrease in x will cause a decrease in y, and this will cause an increase in x.
In this case, propagating the change around the feedback loop makes the net effect
indeterminate, and again we do not know if the process converges.

* IV. The increase in T causes an increase in y, which causes an increase in x. Now
the increase in x causes a decrease in y, and a consequent decrease in x. As in
Case III, the final results are indeterminate.

6
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Can we say attn more about convegenc? When we propagate fte initial lnPUls

around the MWp we have £SZL - gSyY aOW &Y.i+ - Adlz.. so ftt -6- - ISMYP or
-g/)Oy,. Henc. the sum J~y WIN converge iflA I ,aSw/ldveg thrie

By inVtrodcin an @*kiit dynMIC process of equlibration Into our assumptions, we have arrived

at conditians tar convergence afthme process, or what is equivalent conditions for stability of

equilbrum.

ExanVg Table 1, we see VWa In the casm of convergence (Me right-hatnd half of the

labl), the net effects of the change in T are the same in sign se the gross *ffe@s of the iNia
propagation to y, and from y to L. The met chiange In y will always have tie same sign as tie
change In T, while tie, change in x will have tie same or opposite sign as SyIs positive or

negative, respectively. The sign of the feedback link, f. Is Irrelevant - at most It Magnifies Or

damps the effeet of the initial impulse as fA, is positive or negative, reepectively.

Net Effect of Change In dT

B A

fgy Idx dy dx dy
I .+ + +. +

4. I

Tafte 3-1: Propagation Effects

3.2. Dynamics and Stability

From the results of tie last section, we learn that even in very simple systems with

feedback WMps ft conclusios we can draw about shifts in equilibrium may depend critically

upon assuiMptions of system stability. But tie condtior staility are not uniqueiy deterined

by te equibium eqations alone. They depend also on the process of adjustment when

equilibrium Is disturbed.

Consider again the system:
Y -Ax7)

x a g(Y)

Trha informal argument made earlier, that 4f,b < was a necessary arid sufficient condition for

'/
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stability, was derived implicitly by embedding our equilibrium equations in the following dynamic

structure:

Y, =-J 1 ,

X5(y,.8%-d

for which the previous pair of equations is the (stable or unstable) equilibrium. Since we hold T

constant after the initial impulse, dT, we may simply disregard this variable and consider the

behavior of the system moving from a non-equilibrium initial position, zo and yo, with T fixed. We

obtain the second-order difference equation:

Y1 2 -MM

For small disturbances from equilibrium, we can replace this by the linear system:

Y, 2 - AY1

where A .f. s,. Let

y,- (Aky

so that

(Ak)2 = A(Aky,

A k I

-k, 1/(A) 112

y, se A'2 yo.

This expression for Ya implies that y will converge iff A < 1, which was also our conclusion in

Section 3.1. In general, assuming different processes of adjustment may lead to different stability

conditions, and as a consequence, to different net effects of a shift in parameters.

3.3. Propagation and Stability

The description of value propagation in Section 3.1 is very similar to the procedure for

solving confluence equations to derive the Cynamic behavior of a system employed by de Kleer

and Brown in ENVISION (1]. Consider again the system in the example.

Ymf-A,7)
z -g(y)

If we assume that these equations represent components or conduits that transmit signals

instantaneously (in other words, that the equilibrium relations represented by these equations are

restored instantly after a disturbance,) we can derive a description of the dynamic behavior of the

system by differentiating the equations as follows;

+(2)

7,
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dy (3)~~87"

As in the example in Section 3.1, we assume f. > 0 andfT > 0.

Case I: Assume f, y > 0. Equations (2) and (3) become the following confluence

equations;
(4)

ay=ax +.ai

(5)
ax=o a,

where a. denotes the sign of Given the input disturbance,

aT =+, (6)

the values of a, and ax can be determined by propagating the disturbance through the confluence

equations. In this case, we have a choice of propagating it through confluence (4) to ax or to a.

Case IA: Assuming that ax is initially negligible, we propagate the input to a, through (4) to

obtain

a = +, (7)

Propagating this to & through (5), we have

ax+- . (8)

Propagating (8) back to (7) does not produce a contradiction. Therefore, (7) and (8) are a

solution. Furthermore, if we now assume that aT is negligible and propagate (8) to ay through (7),

the value obtained for ay would be the same, +. Therefore, the feedback must be positive.

Case IS: Likewise, if we assume that a, is initially negligible, we obtain

ax = - and a. -.

Other cases lead to the same solutions, as shown in Table 3-1. Notice that in solving the

problem by sign propagation, as is done in ENVISION, it is the assumptions about the orders of

propagation that lead to different solutions in Case IA and IB above. On the other hand, in

Section 3.1. assumptions about the value of Jg Ylead to the two different solutions. Lers explore

these assumptions in terms of stability. Equations (2) and (3) can be rewritten as follows:
( - dT (9)

(I ff (10)

f1'y < dy/di, d;dW > 0, since (1-fA,) > JT > 0, and dT/d > 0. In terms of
propagation this means that Idy/dl > Vf,(d"/d)l, hence the effect of iT/dt on

9
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dyld& dominates the effect on dr/dt. This is equivalent to propagating aT to ay
first, i.e. Case IA above.

fJffy • 1dyldt, dx./dt - 0. In terms of propagation this means that Idy/dtl < Lfh(dXdt)l.
hence the effect of dT/dr on dx/d dominates the effect on dy/dr. This is
equivalent to propagating aT to ax first, i.e. Case IB above.

As shown in the previous section, A is the stable system, and B is the unstable system,

though the question of stability cannot be answered by solving confluence equations. Notice that

although the stability assumption is weaker than the assertion that ax or a, is negligible,

nevertheless it is strong enough to determine which term in Equation (2) dominates.

4. Non-linear Dynamic Systems with Ordinal Variables
Thus far we have been concerned with static functional relations among variables. Now we

turn to time-dependent relations expressible as differential equations. The discussion will be

limited to the simplest case of first-order non-linear differential equations in three variables,

including time. Any such system can be written as:

= g(xy) (12)

Taking the ratio of Equations (12) to (11), we also have:
±= #(,Y) (13)

Here we are on more familiar ground, for textbooks on differential equations do often

present the kind of qualitative treatment of non-linear systems that we are about to describe here.

Hence, we can be brief. In the x-y plane, we can draw the direction field that describes the paths

of the system from any initial conditions. At any point in such a path, the slope of the path will be

given by equation (13). Figure 4-1 depicts the direction field for (13) in the case where

ftx,y) -z + b t0(y) and
(x,y) -y + a log(x), (14)

If we set ±- 0, then we obtain the curve, fxy)=0, along which the intersecting paths of the

direction field are vertical. Similarly, if we set a 0, we obtain the curve, g(xy)-0, along which the

intersecting paths of the direction field are horizontal. The points where a =0 are the (stable
dt d

and unstable) equilibrium points of the system. In Figure 4-1, at A, where the paths for increasing

t converge on an equilibrium point, the equilibrium is stable; at B, where they diverge from one, it

is unstable. At saddle points, some paths may converge while others diverge, making the

10
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x -b 10g(y)

B

x

y -a Iog(x)

Flgur*4-1: Direction Field for Equations (14)
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equilibrium unstable.

Sacks developed a program called PLR (Piecewise Linear Reasoner) which examines the

properties of the direction field of a system of non-linear differential equations to determine its

qualitative behavior [7]. In particular, he divides the space into regions in each of which the

system can be approximated by a linear system. In each such region, he examines the direction

field to determine the path of the system within and out of the region. The global behavior of the

system can be characterized qualitatively in terms of the system's path through these regions.

Weld has proposed a technique, which he calls Comparative Analysis, and which can draw

some conclusions about the displacement of the paths and of equilibria with changes in system

parameters [9]. In Section 6 we will show how these sorts of conclusions can be drawn directly

by our methods of ordinal reasoning.

In non-linear systems of differential equations, the paths of the direction field may also form

closed curves in the x-y plane, so that the system describes a periodic motion around the curve.

Such paths are called limit cycles. They are stable if neighboring paths all converge to them

(from both inside the closed curve and outside), unstable otherwise.

It is obvious that these properties - the distribution of equilibrium points and limit cycles, of

a system of differential equations, and the stability or instability of these equilibria and cycles --

are invariant under ordinal transformations of x and y. For consider such a transformation,

x°= .(x), y =, #(y). Since the orderings of x-coordinates and of y-coordinates are not altered, all

direction paths will remain intact. If they converged on a point or limit cycle in the x-y plane, they

will converge in the xo-y" plane.

Consider the case where the system defined by equations (11) and (12) has an equilibrium

point which, by transformations of the coordinates and without loss of generality, we can plaoe at

the origin. If we expand I(*) and g(.) in Taylor's series and neglect the higher-order terms, the

system is approximated by

(15)
,dx

.= ax + by
(16)

dy

Integrating these equations, we obtain:

x = A eAi+B e(V)
(17)
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y - C eA')+D eQz)

where X -(a~)+[(a+d) 2-4(ad-bc)]j1 . The equilibrium will be stable iff both solutions for X have

negative real parts. But this condition will hold, in turn, iff (a+d) < 0 and (bc-ad) < 0. >From

Equation (15) (dyldx),4 -a,O - o/b, while from (16) (dy/dx)jY/d= ..- cid. So stability depends on

which of these two slopes is the greater. If, for example, a and d are negative, while b and c are

positive, stability requires that bc < ad, whence -cld< -a/b. Then the slope of the curve for

must be steeper than the slope of the curve for !.

For, by the chain rule for differentiation,

dy dr

Subtracting these two quantities, we have:

d dx dt dy de dx &
Since the first two factors on the right side are always positive, thesign of the difference of

the slopes of the transformed variables is the same as the sign of the difference of the slopes of

the original variables. Hence, stability is preserved under positive monotonic transformations of

the variables. This can be generalized as follows:
Theorem 3: For a system of differential equations:

-E.=fi(xl,2 , .. ,x,), i=] .,n,
the stability of the equilibrium points is invariant over positive monotonic

transformations such as w, = gi (xi).

Proof:

The eigenvalues of the transformed equations are the same as those of the original

differential equations.

d dwi dx.

Linearizing, fi, g! about the equilibrium point, using a Taylor series expansion,

el'- gio" + gi"(xi - xo) + "'"

where iZo (xio. xo, "", x.0) at equilibrium. At equilibrium fi = 0, and with no loss of generality let

us assume ife 0. Therefore, neglecting higher order terms,
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dt ax.
where, I -,.- (w Wnd g - (ag ')= Substitute for x, in terms of wi by using a linearized relationft ,d4

about the equilibrium point.

X J, + -),, (wi - w0) +

Assume wo - 0, with no loss of generality. Therefore,
dw. a4i wi

d.
where, % a Notice a 1.

dzjdwtica=.

In order to determine the eigenvalues of this equation consider the following determinant,

say A.f1-, a,1212, a' l.,-Ifl.,

= 0
a, f.j, a,24f,. ..-. ,-X.

The expansion of this determinant is given by

IAI-. (alma2pa a ... a,,)IPI

where a is all the permutations of (1, 2, .n), and 1P.1 = I I is the permutation matrix of A.

Therefore,
(a,, I c a a3, ... a,,v) =f*2Of ' " fv

where fig -f, - X for i =6. Notice that all the terms with non-repeating indices always form a
cyce with each index in both positions, i.e. a, . an . .. Therefore is always canceled by L1.

This implies that the characteristic polynomial of the transformed equation is the same as

that of the original equation, therefore that the eigenvalues are exactly the same. ..

5. Extreme Values
Let y nf x) be a single-valued function of x, and x* = O(x) and y' = W(y) be positive

monotonic transformations of x and y, respectively. Let Aix) have a local maximum at Xo, so that

for x in some Interval about zo, y(xo) = yo> y(x). Now ys > yj iff y1 
> y(x). Hence, y(x) : y*(x*),

where za - O) and xz - Ox) for any other x in the interval. It follows that maxima of the original

function correspond to maxima of the transformed function.

This result may seem ounterintuitive, since whether a stationary value of a differentiable

function is a maximum or a minimum depends on the sign of the second derivative, and this sign
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is not, in general, invariant under positive monotonic transformations of the variables (concavities

can change to convexities, and vice versa). However, it is easy to show that the sign of the

second derivative is invariant in the neighborhood of a stationary point. The proof, which again

makes use of the chain rule for differentiation, is straightforward, and will be omitted here.

6. Comparative Statics

Much qualitative analysis takes the form of comparative statics. The (stable) equilibrium of

a system is displaced by a change in one of its parameters, and we wish to know how the values

of the system variables are changed when it settles to its new equilibrium. In many cases of

interest, the shapes of the system functions are not known, but only the signs of their derivatives;

and only the sign of the disturbance, and not its magnitude, is given.

To see what kinds of conclusions can be reached under such circumstances, let us

consider a simple example from economics. (See Figure 6-1.) For a certain commodity, the

quantity, q, will be supplied by producers if the price is ps = ps<q), and the same quantity will be

purchased by consumers if the price is PD = PD(q). More will be supplied if the price is higher

(!Ls > 0), and less will be purchased if the price is higher (..=. > 0). The market will be in

equilibrium when ps(qo) P(qO) = Po.

Now suppose that a sales tax is imposed on the commodity, so that the net supply price for

any quantity is increased by the amount of the tax. Call the new supply price Ps = > ps(q),

and ps(qo) = PD(4O) = po"

Theorem 4: The equilibrium price will be increased, po > po, and the equilibrium
quantity will be decreased, 40 < q0. Moreover, since the tax is such that ps(q) increAses
with an increase in q, the equilibrium increase in price will be smaller than it would have
oeen if the quantity exchanged had remained constant:

ps(qo) > P (4o) - Po

Proof: These results do not depend on continuity or differentiability of the functions. For

all q > qo,PD(q) < po, since the demand price decreases when the quantity increases. But

ps(q) < po, since the supply price increases under the same conditions.

For all q, pS(q) > ps(q), the difference being the amount of the tax. Therefore,

pD(q) < Po < ps(q) < Ps(q) for all q > q0, and pD(q) < ps(q) in this range of q. Hence, if a new

equilibrium exists, we must have 40 < q0. Now for all q < q0 (including 4o), ps(q) < pS(qo), hence

As(qo) > ,bs(4l) - P0 Similarly, pD(q) > PD(qo), so that pD(4io) -,po > Po ...
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Figure 6-1: Equilibrium for Eoonomic Markets
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7. Conclusion
In these pages we have sketched out some of the properties of functions, and especially

continuous differentiable functions, that are invariant under monotonic transformations of the

variables, and have shown how these properties can be used to analyze phenomena where the

variables are only defined ordinally.

The main idea is that, in the case where two variables are positively (negatively)

monotonically related, their positive monotonic transforms are positively (negatively)

monotonically related. If x is a monotonic function of y and y of z, then x is a monotonic function of

z. If we assign the number zero to a monotonic relation if it is positive, and I if it is negative, and

if xj, x1, x2, z3 . .... x, are a sequence of variables, each of which is a monotonic function of its

successor, than the sign of the relation between xi and x,, will be positive or negative as the sum,

modulo 2, of the numbers assigned to the intervening relations is 0 or 1.

Much reasoning about magnitudes, even in the sciences, takes place without any help from

mathematical formalisms, but solely in terms of ordinary language. As the illustrations in this

paper suggest, a good deal of this reasoning makes implicit use of the properties of ordinal

variables and monotonic transformations. In both the social science and natural scence

literatures, much reasoning is also done from diagrams, without concern for the exact forms of

the functions depicted or the cardinal values of variables. This reasoning also makes use only of

the ordinal properties of the magnitudes depicted in the diagrams. We would conjecture that

much if not most everyday, "commonsense" reasoning, when it is concerned with magnitudes, is

actually implicit reasoning about ordinal relations.
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